Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Neurosci Res ; 200: 34-40, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37758027

RESUMEN

Purposive decision-making, based on sensory input and memory, is a component of executive functioning. Evaluating executive functioning is crucial for understanding neuropsychiatric disorders and brain injuries. However, there's a lack of mouse tests for this purpose. To address this, we developed a novel touchscreen task to assess purposive decision-making in mice. In the present task, the mice had to touch the correct window (left or right), with a visual stimulus as a cue for decision-making. The mice gradually acquired a relationship between the visual stimuli and the action they should take. Each mouse made the correct choice more than 80% of the time based on the visual cue and memory and knowledge of themselves. We could clearly determine when the mice saw the visual cue. The present task offers a valuable tool for investigating the neural mechanisms behind decision-making.


Asunto(s)
Conducta Animal , Condicionamiento Operante , Toma de Decisiones , Animales , Ratones
2.
Brain Commun ; 5(6): fcad311, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025274

RESUMEN

Cognitive flexibility, the ability of adapting to an ever-changing environment, declines with aging and impaired in early stages of dementia. Although recent studies have indicated there is a relationship between the intestinal microbiota and cognitive function, few studies have shown relationships between intestinal microbiota and cognitive flexibility because of limited behavioural tasks in mice. We recently established a novel cognitive flexibility task for mice using a touchscreen operant apparatus and found that probiotic treatment with a mixture of Bifidobacterium animalis subsp. lactis LKM512 and arginine improved cognitive flexibility in young adult mice. To confirm the effects of the probiotic treatment on cognitive flexibility and to determine whether it is effective even in older age, we here examined the effects of long-term treatment with Bifidobacterium animalis subsp. lactis LKM512 and arginine on cognitive flexibility in middle-aged mice. From 8 to 15 months of age, mice received LKM + Arg or vehicle (controls) orally three times per week and were subjected to the cognitive flexibility task at 13-15 months old. In one of indices of cognitive flexibility, both Bifidobacterium animalis subsp. lactis LKM512 and arginine-treated mice and vehicle-treated mice showed progressively improved performance by repeating reversal tasks, with a small trend that Bifidobacterium animalis subsp. lactis LKM512 and arginine-treated mice showed better learning performance through reversal phases. With respect to the other index of cognitive flexibility, Bifidobacterium animalis subsp. lactis LKM512 and arginine-treated mice showed significantly fewer error choices than control mice at the reversal phase, i.e. Bifidobacterium animalis subsp. lactis LKM512 and arginine improved the performance of behavioural sequencing acquired in the previous phase, which allowed Bifidobacterium animalis subsp. lactis LKM512 and arginine-treated mice to show an early onset of shift to reversal contingency. Taken together, long-term treatment with Bifidobacterium animalis subsp. lactis LKM512 and arginine was found to improve cognitive flexibility in middle-aged mice, indicating that probiotic treatment might contribute to prevention of age-related cognitive decline.

3.
Toxicol Res (Camb) ; 12(5): 999-1004, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37915473

RESUMEN

Epidemiological and experimental studies indicate that maternal exposure to environmental pollutants impairs the cognitive and motor functions of offspring in humans and laboratory animals. Infant ultrasonic vocalizations (USVs), the communicative behavior of pups toward caregivers, are impaired in rodent models of neurodevelopmental disorders, suggesting a useful method to evaluate the developmental neurotoxicity of environmental pollutants. Therefore, we investigated USVs emitted by mouse pups of dams exposed to 2-chloro-3,7,8-tribromodibenzofuran (TeXDF) and 1,2,3,7,8-pentabromodibenzofuran (PeBDF), which are detected in the actual environment. The USV duration and number in the pups born to dams administered with TeXDF 40 µg/kg body weight (b.w.), but not 8 µg/kg b.w., on gestational day (GD) 12.5, were significantly lower than those in the corresponding pups on postnatal days 3-9. Conversely, there was no statistical change in the USVs emitted by the pups of dams administered with PeBDF 35 or 175 µg/kg b.w. on GD 12.5. To examine whether maternal exposure leads to behavioral impairments in adulthood, we analyzed exploratory behaviors in a novel environment using IntelliCage, a fully automated testing apparatus for group-housed mice. Neither TeXDF nor PeBDF exposure induced significant differences in offspring exploration. Considered together, our findings revealed that TeXDF induces atypical USV emission in infant mice, suggesting the importance of further studies on the risk assessment of mixed brominated/chlorinated dibenzo-p-dioxins and dibenzofurans.

4.
Front Nutr ; 10: 1164809, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37346910

RESUMEN

The relationship between intestinal microbiota and cognitive function has been investigated as one of the major topics within the intestinal microbiota-gut-brain axis. Although an increasing number of studies have demonstrated an improvement in learning and memory when using probiotics or prebiotics, to date, there are no studies that target the cognitive flexibility observed in the early stages of several neuropsychiatric diseases, including dementia. We have recently developed a novel behavioral task using the touchscreen operant system to assess cognitive flexibility. We found that the disruption of the intestinal microbiota in mice induced a decline in cognitive flexibility. In the present study, we investigated the effects of treatments consisting of Bifidobacterium animalis subsp. lactis and arginine (Bifal + Arg), which promote the production of intestinal bacterial polyamine, on cognitive flexibility in the mouse model. Male C57BL6 mice orally treated with Bifal + Arg three times a week gradually decreased the 1st-choice incorrect diagonal rate with repeated reversals compared with the control group. Furthermore, in serial reversal phases, Bifal + Arg-treated mice shifted to the behavior of choosing a new correct spot more quickly after the reversal, and this was faster with repeated reversals. These results indicate that this treatment adapts to change and improves cognitive flexibility. This is the first report to show that intestinal environmental control, including probiotics and prebiotics, improves cognitive flexibility in mice.

5.
Front Neurosci ; 16: 882339, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812208

RESUMEN

Cognitive flexibility is the ability to rapidly adapt to a constantly changing environment. It is impaired by aging as well as in various neurological diseases, including dementia and mild cognitive impairment. In rodents, although many behavioral test protocols have been reported to assess learning and memory dysfunction, few protocols address cognitive flexibility. In this study, we developed a novel cognitive flexibility test protocol using touch screen operant system. This test comprises a behavioral sequencing task, in which mice are required to discriminate between the "rewarded" and "never-rewarded" spots and shuttle between the two distantly positioned rewarded spots, and serial reversals, in which the diagonal spatial patterns of rewarded and never-rewarded spots were reversely changed repetitively. Using this test protocol, we demonstrated that dysbiosis treated using streptomycin induces a decline in cognitive flexibility, including perseveration and persistence. The relative abundances of Firmicutes and Bacteroides were lower and higher, respectively, in the streptomycin-treated mice with less cognitive flexibility than in the control mice. This is the first report to directly show that intestinal microbiota affects cognitive flexibility.

6.
J Appl Toxicol ; 42(2): 305-317, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34254344

RESUMEN

Polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/DFs) are byproducts of brominated flame retardants and can cause adverse health effects. Although exposure to polychlorinated (PC) DD/DFs induces toxic effects, including liver injury and neurobehavioral disorder, little is known about toxicities associated with PBDD/DF exposure. Thus, we examined effects of perinatal exposure to brominated congener on the infant mouse. Gene expression in several organs, such as the liver and brain, was analyzed in mouse offspring born to dams administered 2,3,7,8-tetrabromodibenzofuran (TBDF; 9 or 45 µg/kg body weight) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 3 µg/kg body weight) on gestational day 12.5. An increase in liver size was observed in TBDF- or TCDD-exposed offspring in infancy. Gene microarray analysis revealed that 163 and 36 genes were markedly upregulated and downregulated, respectively, in the liver of TBDF-exposed mice compared with those in vehicle-treated mice on postnatal day (PND) 5. Significant increases in Cyp1a1, Cyp1a2, Fmo3, and Pnliprp1 and decreases in Tff3, Ocstamp, Kcnk16, and Lgals2 mRNA levels in TBDF-exposed offspring on PNDs 5 and 12 were confirmed by quantitative PCR. In particular, a significant reduction in Tff3 mRNA in the liver, but not in the brain, small intestine, colon, and kidney, was observed in offspring perinatally exposed to TBDF or TCDD. Ultrasonic calls of TBDF- or TCDD-exposed offspring on PNDs 3-5 were impaired. Taken together, perinatal exposure to polyhalogenated dioxin/furan congeners disrupts gene expression patterns in the liver and ultrasonic calling during infancy. These results suggest that liver injury may contribute to neurobehavioral disorder.


Asunto(s)
Benzofuranos/efectos adversos , Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Factor Trefoil-3/metabolismo , Animales , Femenino , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
7.
Front Mol Neurosci ; 14: 741895, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539345

RESUMEN

The central nucleus of the amygdala (CeA) and the lateral division of the bed nucleus of the stria terminalis (BNST) are the two major nuclei of the central extended amygdala that plays essential roles in threat processing, responsible for emotional states such as fear and anxiety. While some studies suggested functional differences between these nuclei, others showed anatomical and neurochemical similarities. Despite their complex subnuclear organization, subnuclei-specific functional impact on behavior and their underlying molecular profiles remain obscure. We here constitutively inhibited neurotransmission of protein kinase C-δ-positive (PKCδ+) neurons-a major cell type of the lateral subdivision of the CeA (CeL) and the oval nucleus of the BNST (BNSTov)-and found striking subnuclei-specific effects on fear- and anxiety-related behaviors, respectively. To obtain molecular clues for this dissociation, we conducted RNA sequencing in subnuclei-targeted micropunch samples. The CeL and the BNSTov displayed similar gene expression profiles at the basal level; however, both displayed differential gene expression when animals were exposed to fear-related stimuli, with a more robust expression change in the CeL. These findings provide novel insights into the molecular makeup and differential engagement of distinct subnuclei of the extended amygdala, critical for regulation of threat processing.

8.
Mol Psychiatry ; 26(2): 710-720, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-30262887

RESUMEN

A discrepancy in oxytocin's behavioral effects between acute and repeated administrations indicates distinct underlying neurobiological mechanisms. The current study employed a combination of human clinical trial and animal study to compare neurochemical changes induced by acute and repeated oxytocin administrations. Human study analyzed medial prefrontal metabolite levels by using 1H-magnetic resonance spectroscopy, a secondary outcome in our randomized, double-blind, placebo-controlled crossover trial of 6 weeks intranasal administrations of oxytocin (48 IU/day) and placebo within-subject design in 17 psychotropic-free high-functioning men with autism spectrum disorder. Medial prefrontal transcript expression levels were analyzed in adult male C57BL/6J mice after intraperitoneal injection of oxytocin or saline either once (200 ng/100 µL/mouse, n = 12) or for 14 consecutive days (200 ng/100 µL/mouse/day, n = 16). As the results, repeated administration of oxytocin significantly decreased the medial prefrontal N-acetylaspartate (NAA; p = 0.043) and glutamate-glutamine levels (Glx; p = 0.001), unlike the acute oxytocin. The decreases were inversely and specifically associated (r = 0.680, p = 0.004 for NAA; r = 0.491, p = 0.053 for Glx) with oxytocin-induced improvements of medial prefrontal functional MRI activity during a social judgment task not with changes during placebo administrations. In wild-type mice, we found that repeated oxytocin administration reduced medial frontal transcript expression of N-methyl-D-aspartate receptor type 2B (p = 0.018), unlike the acute oxytocin, which instead changed the transcript expression associated with oxytocin (p = 0.0004) and neural activity (p = 0.0002). The present findings suggest that the unique sensitivity of the glutamatergic system to repeated oxytocin administration may explain the differential behavioral effects of oxytocin between acute and repeated administration.


Asunto(s)
Trastorno del Espectro Autista , Oxitocina , Administración Intranasal , Animales , Trastorno del Espectro Autista/tratamiento farmacológico , Método Doble Ciego , Humanos , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Oxitocina/uso terapéutico
9.
FEBS Open Bio ; 10(8): 1436-1446, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32598571

RESUMEN

Multiple genetic factors related to autism spectrum disorder (ASD) have been identified, but the biological mechanisms remain obscure. Timothy syndrome (TS), associated with syndromic ASD, is caused by a gain-of-function mutation, G406R, in the pore-forming subunit of L-type Ca2+ channels, Cav 1.2. In this study, a mouse model of TS, TS2-neo, was used to enhance behavioral phenotyping and to identify developmental anomalies in inhibitory neurons. Using the IntelliCage, which enables sequential behavioral tasks without human handling and mouse isolation stress, high social competitive dominance was observed in TS2-neo mice. Furthermore, histological analysis demonstrated inhibitory neuronal abnormalities in the neocortex, including an excess of smaller-sized inhibitory presynaptic terminals in the somatosensory cortex of young adolescent mice and higher numbers of migrating inhibitory neurons from the medial ganglionic eminence during embryonic development. In contrast, no obvious changes in excitatory synaptic terminals were found. These novel neural abnormalities in inhibitory neurons of TS2-neo mice may result in a disturbed excitatory/inhibitory (E/I) balance, a key feature underlying ASD.


Asunto(s)
Trastorno Autístico/metabolismo , Modelos Animales de Enfermedad , Síndrome de QT Prolongado/metabolismo , Sindactilia/metabolismo , Animales , Conducta Animal , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis , Predominio Social
10.
Commun Biol ; 1: 225, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30564746

RESUMEN

Social relationships are a key determinant of social behaviour, and disruption of social behaviour is a major symptom of several psychiatric disorders. However, few studies have analysed social relationships among multiple individuals in a group or how social relationships within a group influence the behaviour of members with impaired socialisation. Here, we developed a video-analysis-based system, the Multiple-Animal Positioning System (MAPS), to automatically and separately analyse the social behaviour of multiple individuals in group housing. Using MAPS, we show that social isolation of male mice during adolescence leads to impaired social proximity in adulthood. The phenotype of these socially isolated mice was partially rescued by cohabitation with group-housed (socially-reared) mice, indicating that both individual behavioural traits and those of cagemates influence social proximity. Furthermore, we demonstrate that low reactive behaviour of other cagemates also influence individual social proximity in male mice.

11.
Nihon Eiseigaku Zasshi ; 73(2): 110-114, 2018.
Artículo en Japonés | MEDLINE | ID: mdl-29848860

RESUMEN

The brain and mind are not only determined genetically but are also nurtured by environmental stimuli in early life. However, the relationship between early life environment and phenotypes in adulthood remains elusive. Using the IntelliCage-based competition task for group-housed mice, we previously found that maternal exposure to a low dose of an environmental pollutant, dioxin, resulted in abnormal social behavior, that is, low competitive dominance, which is defined by decreased occupancy of limited resource sites under highly competitive circumstances. Although we were unable to identify which behavioral phenotype applies to abnormalities such as "human social nature", we found signs of hypoactivation of the medial prefrontal cortex, as seen in patients with autism spectrum disorder. In addition, another model of environmental factors, repeated isolation during development, and that of genetic factors including mice with neuronal heterotopia, which refers to brain malformations resulting from deficits of neuronal migration, showed low competitive dominance. These results indicate that a constitutive approach to capture the neural network of the whole brain is necessary especially in cases where the temporal gap of causal relationships is large such as DOHaD.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/fisiología , Exposición Materna/efectos adversos , Conducta Social , Medio Social , Animales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/fisiopatología , Conducta Animal , Encéfalo/fisiopatología , Niño , Preescolar , Conducta Competitiva , Dioxinas/efectos adversos , Contaminantes Ambientales/efectos adversos , Femenino , Humanos , Ratones , Modelos Animales , Red Nerviosa/fisiología
12.
PLoS One ; 12(8): e0183497, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28820910

RESUMEN

The basic helix-loop-helix (bHLH) transcription factors exert multiple functions in mammalian cerebral cortex development. The aryl hydrocarbon receptor (AhR), a member of the bHLH-Per-Arnt-Sim subfamily, is a ligand-activated transcription factor reported to regulate nervous system development in both invertebrates and vertebrates, but the functions that AhR signaling pathway may have for mammalian cerebral cortex development remains elusive. Although the endogenous ligand involved in brain developmental process has not been identified, the environmental pollutant dioxin potently binds AhR and induces abnormalities in higher brain function of laboratory animals. Thus, we studied how activation of AhR signaling influences cortical development in mice. To this end, we produced mice expressing either constitutively active-AhR (CA-AhR), which has the capacity for ligand-independent activation of downstream genes, or AhR, which requires its ligands for activation. In brief, CA-AhR-expressing plasmid and AhR-expressing plasmid were each transfected into neural stems cells in the developing cerebrum by in utero electroporation on embryonic day 14.5. On postnatal day 14, mice transfected in utero with CA-AhR, but not those transfected with AhR, exhibited drastically reduced dendritic arborization of layer II/III pyramidal neurons and impaired neuronal positioning in the developing somatosensory cortex. The effects of CA-AhR were observed for dendrite development but not for the commissural fiber projection, suggesting a preferential influence on dendrites. The present results indicate that over-activation of AhR perturbs neuronal migration and morphological development in mammalian cortex, supporting previous observations of impaired dendritic structure, cortical dysgenesis, and behavioral abnormalities following perinatal dioxin exposure.


Asunto(s)
Dendritas , Células Piramidales/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal , Animales , Ratones , Ratones Endogámicos C57BL
13.
JCI Insight ; 2(10)2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28515367

RESUMEN

Many extremely preterm infants (born before 28 gestational weeks [GWs]) develop cognitive impairment in later life, although the underlying pathogenesis is not yet completely understood. Our examinations of the developing human neocortex confirmed that neuronal migration continues beyond 23 GWs, the gestational week at which extremely preterm infants have live births. We observed larger numbers of ectopic neurons in the white matter of the neocortex in human extremely preterm infants with brain injury and hypothesized that altered neuronal migration may be associated with cognitive impairment in later life. To confirm whether preterm brain injury affects neuronal migration, we produced brain damage in mouse embryos by occluding the maternal uterine arteries. The mice showed delayed neuronal migration, ectopic neurons in the white matter, altered neuronal alignment, and abnormal corticocortical axonal wiring. Similar to human extremely preterm infants with brain injury, the surviving mice exhibited cognitive deficits. Activation of the affected medial prefrontal cortices of the surviving mice improved working memory deficits, indicating that decreased neuronal activity caused the cognitive deficits. These findings suggest that altered neuronal migration altered by brain injury might contribute to the subsequent development of cognitive impairment in extremely preterm infants.

14.
J Toxicol Sci ; 42(1): 25-30, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28070106

RESUMEN

The aryl hydrocarbon receptor (AhR) avidly binds dioxin, a ubiquitous environmental contaminant. Disruption of downstream AhR signaling has been reported to alter neuronal development, and rodent offspring exposed to dioxin during gestation and lactation showed abnormalities in learning and memory, emotion, and social behavior. However, the mechanism behind the disrupted AhR signaling and developmental neurotoxicity induced by xenobiotic ligands remains elusive. Therefore, we studied how excessive AhR activation affects neuronal migration in the hippocampal CA1 region of the developing mouse brain. We transfected constitutively active (CA)-AhR, AhR, or control vector plasmids into neurons via in utero electroporation on gestational day 14 and analyzed neuronal positioning in the hippocampal CA1 region of offspring on postnatal day 14. CA-AhR transfection affected neuronal positioning, whereas no change was observed in AhR-transfected or control hippocampus. These results suggest that constitutively activated AhR signaling disrupts neuronal migration during hippocampal development. Further studies are needed to investigate whether such developmental disruption in the hippocampus leads to the abnormal cognition and behavior of rodent offspring upon maternal exposure to AhR xenobiotic ligands.


Asunto(s)
Región CA1 Hipocampal/fisiología , Neuronas/fisiología , Receptores de Hidrocarburo de Aril/genética , Animales , Región CA1 Hipocampal/embriología , Movimiento Celular , Electroporación , Embrión de Mamíferos , Femenino , Ratones , Ratones Endogámicos C57BL , Embarazo , Transducción de Señal
15.
Biochem Biophys Res Commun ; 476(2): 108-13, 2016 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-27178212

RESUMEN

In the developing mammalian brain, neural network formation is regulated by complex signaling cascades. In utero and lactational dioxin exposure is known to induce higher brain function abnormalities and dendritic growth disruption in rodents. However, it is unclear whether perinatal dioxin exposure affects the expression of genes involved in neural network formation. Therefore, we investigated changes in gene expression in the brain regions of developing mice born to dams administered 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; dose: 0, 0.6, or 3.0 µg/kg) on gestational day 12.5. Quantitative RT-PCR showed that TCDD exposure induced Ahrr expression in the cerebral cortex, hippocampus, and olfactory bulb of 3-day-old mice. Gene microarray analysis indicated that the mRNA expression levels of Sema3b and Sema3g, which encode proteins that are known to control axonal projections, were elevated in the olfactory bulb of TCDD-exposed mice, and the induction of these genes was observed during a 2-week postnatal period. Increased Sema3g expression was also observed in the brain but not in the kidney, liver, lung, and spleen of TCDD-exposed neonatal mice. These results indicate that the Sema3b and Sema3g genes are sensitive to brain-specific induction by dioxin exposure, which may disrupt neural network formation in the mammalian nervous system, thereby leading to abnormal higher brain function in adulthood.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Contaminantes Ambientales/toxicidad , Exposición Materna/efectos adversos , Dibenzodioxinas Policloradas/toxicidad , Semaforinas/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Encéfalo/anomalías , Encéfalo/metabolismo , Contaminantes Ambientales/administración & dosificación , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Lactancia/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Bulbo Olfatorio/anomalías , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/crecimiento & desarrollo , Bulbo Olfatorio/metabolismo , Dibenzodioxinas Policloradas/administración & dosificación , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/genética , Proteínas Represoras/genética
16.
Front Neurosci ; 10: 137, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27064386

RESUMEN

Exposure to arsenic from well water in developing countries is suspected to cause developmental neurotoxicity. Although, it has been demonstrated that exposure to sodium arsenite (NaAsO2) suppresses neurite outgrowth of cortical neurons in vitro, it is largely unknown how developmental exposure to NaAsO2 impairs higher brain function and affects cortical histology. Here, we investigated the effect of prenatal NaAsO2 exposure on the behavior of mice in adulthood, and evaluated histological changes in the prelimbic cortex (PrL), which is a part of the medial prefrontal cortex that is critically involved in cognition. Drinking water with or without NaAsO2 (85 ppm) was provided to pregnant C3H mice from gestational days 8 to 18, and offspring of both sexes were subjected to cognitive behavioral analyses at 60 weeks of age. The brains of female offspring were subsequently harvested and used for morphometrical analyses. We found that both male and female mice prenatally exposed to NaAsO2 displayed an impaired adaptation to repetitive reversal tasks. In morphometrical analyses of Nissl- or Golgi-stained tissue sections, we found that NaAsO2 exposure was associated with a significant increase in the number of pyramidal neurons in layers V and VI of the PrL, but not other layers of the PrL. More strikingly, prenatal NaAsO2 exposure was associated with a significant decrease in neurite length but not dendrite spine density in all layers of the PrL. Taken together, our results indicate that prenatal exposure to NaAsO2 leads to behavioral inflexibility in adulthood and cortical disarrangement in the PrL might contribute to this behavioral impairment.

17.
Artículo en Inglés | MEDLINE | ID: mdl-26869994

RESUMEN

Bisphenol A (BPA) has been known to have endocrine-disrupting activity to induce reproductive and behavioral abnormalities in offspring of laboratory animal species. However, morphological basis of this abnormality during brain development is largely unknown. Cerebral cortex plays a crucial role in higher brain function, and its precisely laminated structure is formed by neuronal migration. In the present study, transfecting a plasmid (pCAG-mCherry) by in utero electroporation (IUE), we visualized developing neurons and investigated the possible effects of in utero BPA exposure on neuronal migration. Pregnant mice were exposed to BPA by osmotic pump at estimated daily doses of 0, 40 (BPA-40), or 400 (BPA-400) µg/kg from embryonic day 14.5 (E14.5) to E18.5. IUE was performed at E14.5 and neuronal migration was analyzed at E18.5. Compared with the control group, neuronal migration in the cortical plate was significantly decreased in the BPA-40 group; however, there was no significant difference in the BPA-400 group. Among several neuronal migration-related genes and cortical layer-specific genes, TrkB in the BPA-400 group was found significantly upregulated. In conclusion, in utero exposure to low BPA dose was found to disrupt neuronal migration in the cerebral cortex in a dose-specific manner.

18.
Arch Toxicol ; 90(3): 691-700, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25804199

RESUMEN

Bisphenol A (BPA), a widely used raw component of polycarbonate plastics and epoxy resins, has been reported to induce developmental neurotoxicity in offspring born to dams exposed to low doses of BPA; however, the toxicity mechanism remains elusive. To study the effects of in utero BPA exposure on neuronal morphology, we studied spine density and dendritic growth in the hippocampal CA1 of aged mice and developing mice prenatally exposed to low doses of BPA. Pregnant mice were orally administered BPA at a low dose of 0, 40, or 400 µg/kg body weight/day on gestational days 8.5-17.5/18.5. Mouse progenies were euthanized at 3 weeks or 14 months, and their brains were analyzed for dendritic arborization of GFP-expressing neurons or spine densities of Golgi-stained neurons in the hippocampal CA1. Regardless of the dose, in utero BPA exposure reduced spine densities in the hippocampal CA1 of the 14-month-old mice. In the developing brain from the 3-week-old mice born to dams exposed to BPA at a dose of 400 µg/kg body weight/day, overall length and branching number of basal dendrites but not apical dendrites were decreased. In utero low doses of BPA exposure disrupts hippocampal CA1 neuronal morphology during development, and this disruption is believed to persist in adulthood.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Región CA1 Hipocampal/efectos de los fármacos , Neuronas/efectos de los fármacos , Fenoles/toxicidad , Animales , Compuestos de Bencidrilo/administración & dosificación , Región CA1 Hipocampal/crecimiento & desarrollo , Dendritas/efectos de los fármacos , Femenino , Ratones Endogámicos C57BL , Neuronas/patología , Fenoles/administración & dosificación , Embarazo , Efectos Tardíos de la Exposición Prenatal
19.
Neurotoxicol Teratol ; 52(Pt A): 42-50, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26526904

RESUMEN

Increased prevalence of mental disorders cannot be solely attributed to genetic factors and is considered at least partly attributable to chemical exposure. Among various environmental chemicals, in utero and lactational dioxin exposure has been extensively studied and is known to induce higher brain function abnormalities in both humans and laboratory animals. However, how the perinatal dioxin exposure affects neuromorphological alterations has remained largely unknown. Therefore, in this study, we initially studied whether and how the over-expression of aryl hydrocarbon receptor (AhR), a dioxin receptor, would affect the dendritic growth in the hippocampus of the developing brain. Transfecting a constitutively active AhR plasmid into the hippocampus via in utero electroporation on gestational day (GD) 14 induced abnormal dendritic branch growth. Further, we observed that 14-day-old mice born to dams administered with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; dose: 0, 0.6, or 3.0 µg/kg) on GD 12.5 exhibited disrupted dendritic branch growth in both the hippocampus and amygdala. Finally, we observed that 16-month-old mice born to dams exposed to perinatal TCDD as described above exhibited significantly reduced spine densities. These results indicated that abnormal micromorphology observed in the developing brain may persist until adulthood and may induce abnormal higher brain function later in life.


Asunto(s)
Dendritas/efectos de los fármacos , Dendritas/patología , Contaminantes Ambientales/toxicidad , Hipocampo/efectos de los fármacos , Hipocampo/crecimiento & desarrollo , Hipocampo/patología , Dibenzodioxinas Policloradas/toxicidad , Receptores de Hidrocarburo de Aril/metabolismo , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/crecimiento & desarrollo , Amígdala del Cerebelo/patología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/patología , Relación Dosis-Respuesta a Droga , Contaminantes Ambientales/análisis , Femenino , Hipocampo/metabolismo , Masculino , Exposición Materna , Ratones , Ratones Endogámicos C57BL , Dibenzodioxinas Policloradas/análisis , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Células Piramidales/patología
20.
J Neurosci ; 35(36): 12432-45, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26354912

RESUMEN

Neuronal heterotopia refers to brain malformations resulting from deficits of neuronal migration. Individuals with heterotopias show a high incidence of neurological deficits, such as epilepsy. More recently, it has come to be recognized that focal heterotopias may also show a range of psychiatric problems, including cognitive and behavioral impairments. However, because focal heterotopias are not always located in the brain areas responsible for the symptoms, the causal relationship between the symptoms and heterotopias remains elusive. In this study, we showed that mice with focal heterotopias in the somatosensory cortex generated by in utero electroporation exhibited spatial working memory deficit and low competitive dominance behavior, which have been shown to be closely associated with the activity of the medial prefrontal cortex (mPFC) in rodents. Analysis of the mPFC activity revealed that the immediate-early gene expression was decreased and the local field potentials of the mPFC were altered in the mice with heterotopias compared with the control mice. Moreover, activation of these ectopic and overlying sister neurons using the DREADD (designer receptor exclusively activated by designer drug) system improved the working memory deficits. These findings suggest that cortical regions containing focal heterotopias can affect distant brain regions and give rise to behavioral abnormalities. Significance statement: Recent studies reported that patients with heterotopias have a variety of clinical symptoms, such as cognitive disturbance, psychiatric symptoms, and autistic behavior. However, the causal relationship between the symptoms and heterotopias remains elusive. Here we showed that mice with focal heterotopias in the somatosensory cortex generated by in utero electroporation exhibited behavioral deficits that have been shown to be associated with the mPFC activity in rodents. The existence of heterotopias indeed altered the neural activities of the mPFC, and direct manipulation of the neural activity of the ectopic neurons and their sister neurons in the overlying cortex improved the behavioral deficit. Thus, our results indicate that focal heterotopias could affect the activities of distant brain areas and cause behavioral abnormalities.


Asunto(s)
Malformaciones del Desarrollo Cortical/fisiopatología , Trastornos Mentales/fisiopatología , Corteza Prefrontal/fisiopatología , Corteza Somatosensorial/fisiopatología , Animales , Genes Inmediatos-Precoces , Aprendizaje por Laberinto , Memoria , Ratones , Corteza Prefrontal/anomalías , Corteza Prefrontal/metabolismo , Conducta Social , Corteza Somatosensorial/anomalías , Corteza Somatosensorial/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...